- This is an assessment test.
- To draw maximum benefit, study the concepts for the topic concerned.
- Kindly take the tests in this series with a pre-defined schedule.
Algebra: Quadratic Equations Test-1
Congratulations - you have completed Algebra: Quadratic Equations Test-1.You scored %%SCORE%% out of %%TOTAL%%.You correct answer percentage: %%PERCENTAGE%% .Your performance has been rated as %%RATING%%
Your answers are highlighted below.
Question 1 |
$ \begin{array}{l}If\,\,p=99,\,\\then\,\,value\,\,of\,\,\,p\left( {{p}^{2}}+3p+3 \right)is\end{array}$
999 | |
9999 | |
99999 | |
999999 |
Question 1 Explanation:
$ \begin{array}{l}p\left( {{p}^{2}}+3p+3 \right)\\=99\left( {{99}^{2}}+3X99+3 \right)\\=99\left( 9801+297+3 \right)\\=99(9801+300)\\=99(10101)\\=999999\end{array}$
Question 2 |
If p= 999,
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$ is
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$ is
1000 | |
999 | |
998 | |
1002 |
Question 2 Explanation:
$ \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$
$ =\sqrt[3]{999\left( 1001001 \right)+1}$
$ \displaystyle \begin{array}{l}=\sqrt[3]{999999999+1}\\=\sqrt[3]{1000000000}\\=1000\end{array}$
$ =\sqrt[3]{999\left( 1001001 \right)+1}$
$ \displaystyle \begin{array}{l}=\sqrt[3]{999999999+1}\\=\sqrt[3]{1000000000}\\=1000\end{array}$
Question 3 |
If p=101,
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}-3p+3 \right)-1}$ is
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}-3p+3 \right)-1}$ is
100 | |
101 | |
102 | |
1000 |
Question 3 Explanation:
$ \sqrt[3]{p\left( {{p}^{2}}-3p+3 \right)-1}$
$ \displaystyle \begin{array}{l}\sqrt[3]{101\left( {{101}^{2}}-3X101+3 \right)-1}\\=\sqrt[3]{101\left( 10201-300 \right)-1}\\=\sqrt[3]{1000000}\\=100\end{array}$
$ \displaystyle \begin{array}{l}\sqrt[3]{101\left( {{101}^{2}}-3X101+3 \right)-1}\\=\sqrt[3]{101\left( 10201-300 \right)-1}\\=\sqrt[3]{1000000}\\=100\end{array}$
Question 4 |
If p=124,
$latex \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$=?
$latex \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$=?
5 | |
7 | |
123 | |
125 |
Question 4 Explanation:
$ \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$
$ \displaystyle \begin{array}{l}\sqrt[3]{{{p}^{3}}+3{{p}^{2}}+3p+1}\\=p+1\\=125\end{array}$
$ \displaystyle \begin{array}{l}\sqrt[3]{{{p}^{3}}+3{{p}^{2}}+3p+1}\\=p+1\\=125\end{array}$
Question 5 |
$ \displaystyle \begin{array}{l}If\,x=\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}-1}}\\Then\,\,\,5{{x}^{2}}-5x-1=?\end{array}$
0 | |
3 | |
4 | |
5 |
Question 5 Explanation:
$ \begin{array}{l}x=\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}-1}}\\{{x}^{2}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}\\=>{{x}^{2}}=\frac{{{(\sqrt{5}+1)}^{2}}}{4}\\=>4{{x}^{2}}={{(\sqrt{5}+1)}^{2}}=6+2\sqrt{5}\\=>{{x}^{2}}=\frac{6+2\sqrt{5}}{4}\\5{{x}^{2}}-5x-1\\=\frac{30+10\sqrt{5}-10\sqrt{5}-10-4}{4}\\=\frac{16}{4}\\=4\end{array}$
Once you are finished, click the button below. Any items you have not completed will be marked incorrect.
There are 5 questions to complete.
List |