- This is an assessment test.
- To draw maximum benefit, study the concepts for the topic concerned.
- Kindly take the tests in this series with a pre-defined schedule.
Algebra: Polynomials Test-2
Please wait while the activity loads. If this activity does not load, try refreshing your browser. Also, this page requires javascript. Please visit using a browser with javascript enabled.
Congratulations - you have completed Algebra: Polynomials Test-2.You scored %%SCORE%% out of %%TOTAL%%.You correct answer percentage: %%PERCENTAGE%% .Your performance has been rated as %%RATING%%
Your answers are highlighted below.
Question 1 |
$ \displaystyle If\,\,\,47.2506=4a+\frac{7}{b}+2c+\frac{5}{c}+6e,\,$
then the value of $ \displaystyle 5a+3b+6c+c+3e\,\,is$
53.6003 | |
53.603 | |
153.6003 | |
213.0003 |
Question 1 Explanation:
Matching the right and left hand sides
We get,40=4a
a = 10
7=7b
b = 1
2c = 2/10 = c = 0.1
5/d = 5/100 = d = 100
6e = 6/10000 = e = 0.0001
$ \displaystyle 5a+3b+6c+d+3e$
=50 + 3 + 0.6 + 100 +0.0003=153.6003
We get,40=4a
a = 10
7=7b
b = 1
2c = 2/10 = c = 0.1
5/d = 5/100 = d = 100
6e = 6/10000 = e = 0.0001
$ \displaystyle 5a+3b+6c+d+3e$
=50 + 3 + 0.6 + 100 +0.0003=153.6003
Question 2 |
$ \displaystyle If\,\,\,x=7-4\sqrt{3\,}\,\,then\,\,\sqrt{x}+\frac{1}{\sqrt{x}}$
1 | |
2 | |
3 | |
4 |
Question 2 Explanation:
$ \displaystyle \sqrt{x}+\frac{1}{\sqrt{x}}$=4
$ \begin{array}{l}{{\left( \sqrt{x}+\frac{1}{\sqrt{x}} \right)}^{2}}=x+\frac{1}{x}+2\\=7-4\sqrt{3}+\frac{1}{7-4\sqrt{3}}+2\\=7-4\sqrt{3}+\frac{7+4\sqrt{3}}{\left( 7-4\sqrt{3} \right)\left( 7+4\sqrt{3} \right)}+2\\=7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-48}+2\\=16\\\sqrt{x}+\frac{1}{\sqrt{x}}=4\end{array}$
$ \begin{array}{l}{{\left( \sqrt{x}+\frac{1}{\sqrt{x}} \right)}^{2}}=x+\frac{1}{x}+2\\=7-4\sqrt{3}+\frac{1}{7-4\sqrt{3}}+2\\=7-4\sqrt{3}+\frac{7+4\sqrt{3}}{\left( 7-4\sqrt{3} \right)\left( 7+4\sqrt{3} \right)}+2\\=7-4\sqrt{3}+\frac{7+4\sqrt{3}}{49-48}+2\\=16\\\sqrt{x}+\frac{1}{\sqrt{x}}=4\end{array}$
Question 3 |
$ \displaystyle If\,\,\,\frac{x}{y}=\frac{3}{4},\,$
the value of $ \displaystyle \frac{6}{7}+\frac{y-x}{y+x}\,\,is:$
1 | |
$ \displaystyle \frac{2}{7}$ | |
$ \displaystyle \frac{3}{7}$ | |
$ \displaystyle 1\frac{3}{7}$ |
Question 3 Explanation:
$ \begin{array}{l}let,x=3k\\then\,y=4k\\\frac{y-x}{y+x}=\frac{4k-3k}{4k+3k}=\frac{k}{7k}=\frac{1}{7}\\=>\frac{6}{7}+\frac{y-x}{y+x}=1\end{array}$
Question 4 |
$latex \displaystyle If\,\,\,a=\frac{\sqrt{5}+1}{\sqrt{5}-1}\,\,\,and\,\,\,b\,=\frac{\sqrt{5}-1}{\sqrt{5}+1},$
then the value of $ \displaystyle \frac{{{\left( a+b \right)}^{2}}-ab}{{{\left( a+b \right)}^{2}}-3ab}$
$ \displaystyle \frac{3}{4}$ | |
$ \displaystyle \frac{4}{3}$ | |
$ \displaystyle \frac{3}{5}$ | |
$ \displaystyle \frac{5}{3}$ |
Question 4 Explanation:
$ \displaystyle \begin{array}{l}a=\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\sqrt{5}+1}{\sqrt{5}-1}\times \frac{\sqrt{5}+1}{\sqrt{5}+1}\\=\frac{{{\left( \sqrt{5}+1 \right)}^{2}}}{5-1}=\frac{5+1+2\sqrt{5}}{4}\\=\frac{3+\sqrt{5}}{2}\\b=\frac{\sqrt{5}-1}{2}=\frac{3-\sqrt{5}}{2}\\Therefore\,\,\,a+b\\=\frac{3+\sqrt{5}}{2}+\frac{3-\sqrt{5}}{2}=3\\and\,\,\,ab=\frac{\sqrt{5}+1}{\sqrt{5}-1}\times \frac{\sqrt{5}-1}{\sqrt{5}+1}\\Therefore\,\,\,\exp ression\\=\frac{{{a}^{2}}+ab+{{b}^{2}}}{{{a}^{2}}-ab+{{b}^{2}}}=\frac{{{\left( a+b \right)}^{2}}-ab}{{{\left( a+b \right)}^{2}}-3ab}\\=\frac{9-1}{9-3}=\frac{8}{3}=\frac{4}{3}\end{array}$
Question 5 |
$ \displaystyle \begin{array}{l}If\,\,x=\frac{\sqrt{3}}{2},\,\,\,then\,\,\,\,\\\frac{\sqrt{1+x}}{1+\sqrt{x+1}}+\frac{\sqrt{1-x}}{1-\sqrt{1-x}}\,\,\\is\,\,\,equal\,\,\,to\end{array}$
1 | |
$ \displaystyle 2/\sqrt{3}$ | |
$ \displaystyle 2-\sqrt{3}$ | |
2 |
Question 5 Explanation:
$ \displaystyle \begin{array}{l}=\,\frac{\sqrt{1+x}}{1+\sqrt{x+1}}+\frac{\sqrt{1-x}}{1-\sqrt{1-x}}\,\,\\=\,\frac{\sqrt{1+x}}{1+\sqrt{x+1}}\times \frac{1-\sqrt{1+x}}{1-\sqrt{1+x}}\,\\+\,\frac{\sqrt{1-x}}{1-\sqrt{x-1}}\times \frac{1+\sqrt{1-x}}{1+\sqrt{1-x}}\,\,\,\\=\frac{\sqrt{1+x}-1-x}{1-1-x}\\+\frac{\sqrt{1-x}+1-x}{1-1+x}\\=\frac{\sqrt{1-x}+1-x}{x}\\-\frac{\sqrt{1+x}-1-x}{x}\\=\frac{\sqrt{1-x}+1-x-\sqrt{1+x}+1+x}{x}\\=\frac{2+\sqrt{1-x}-\sqrt{1+x}}{x}\\=\frac{2+\sqrt{1-\frac{\sqrt{3}}{2}}-\sqrt{1+\frac{\sqrt{3}}{2}}}{\frac{\sqrt{3}}{2}}\\=\frac{2+\sqrt{\frac{2-\sqrt{3}}{2}}-\sqrt{\frac{2+\sqrt{3}}{2}}}{\frac{\sqrt{3}}{2}}\\=\frac{2+\sqrt{\frac{4-2\sqrt{3}}{2}}-\sqrt{\frac{4+2\sqrt{3}}{2}}}{\frac{\sqrt{3}}{2}}\\=\frac{4+\sqrt{3}-1-\sqrt{3}-1}{\sqrt{3}}\\=\frac{2}{\sqrt{3}}\end{array}$
Once you are finished, click the button below. Any items you have not completed will be marked incorrect.
There are 5 questions to complete.
List |
You have completed
questions
question
Your score is
Correct
Wrong
Partial-Credit
You have not finished your quiz. If you leave this page, your progress will be lost.
Correct Answer
You Selected
Not Attempted
Final Score on Quiz
Attempted Questions Correct
Attempted Questions Wrong
Questions Not Attempted
Total Questions on Quiz
Question Details
Results
Date
Score
Hint
Time allowed
minutes
seconds
Time used
Answer Choice(s) Selected
Question Text
All done
Need more practice!
Keep trying!
Not bad!
Good work!
Perfect!