 This is an assessment test.
 To draw maximum benefit, study the concepts for the topic concerned.
 Kindly take the tests in this series with a predefined schedule.
Algebra: Quadratic Equations Test1
Congratulations  you have completed Algebra: Quadratic Equations Test1.
You scored %%SCORE%% out of %%TOTAL%%.
You correct answer percentage: %%PERCENTAGE%% .
Your performance has been rated as %%RATING%%
Your answers are highlighted below.
Question 1 
$ \begin{array}{l}If\,\,p=99,\,\\then\,\,value\,\,of\,\,\,p\left( {{p}^{2}}+3p+3 \right)is\end{array}$
999
 
9999  
99999  
999999 
Question 1 Explanation:
$ \begin{array}{l}p\left( {{p}^{2}}+3p+3 \right)\\=99\left( {{99}^{2}}+3X99+3 \right)\\=99\left( 9801+297+3 \right)\\=99(9801+300)\\=99(10101)\\=999999\end{array}$
Question 2 
If p= 999,
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$ is
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$ is
1000  
999  
998  
1002

Question 2 Explanation:
$ \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$
$ =\sqrt[3]{999\left( 1001001 \right)+1}$
$ \displaystyle \begin{array}{l}=\sqrt[3]{999999999+1}\\=\sqrt[3]{1000000000}\\=1000\end{array}$
$ =\sqrt[3]{999\left( 1001001 \right)+1}$
$ \displaystyle \begin{array}{l}=\sqrt[3]{999999999+1}\\=\sqrt[3]{1000000000}\\=1000\end{array}$
Question 3 
If p=101,
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}3p+3 \right)1}$ is
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}3p+3 \right)1}$ is
100
 
101  
102  
1000 
Question 3 Explanation:
$ \sqrt[3]{p\left( {{p}^{2}}3p+3 \right)1}$
$ \displaystyle \begin{array}{l}\sqrt[3]{101\left( {{101}^{2}}3X101+3 \right)1}\\=\sqrt[3]{101\left( 10201300 \right)1}\\=\sqrt[3]{1000000}\\=100\end{array}$
$ \displaystyle \begin{array}{l}\sqrt[3]{101\left( {{101}^{2}}3X101+3 \right)1}\\=\sqrt[3]{101\left( 10201300 \right)1}\\=\sqrt[3]{1000000}\\=100\end{array}$
Question 4 
If p=124,
$latex \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$=?
$latex \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$=?
5  
7  
123
 
125 
Question 4 Explanation:
$ \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$
$ \displaystyle \begin{array}{l}\sqrt[3]{{{p}^{3}}+3{{p}^{2}}+3p+1}\\=p+1\\=125\end{array}$
$ \displaystyle \begin{array}{l}\sqrt[3]{{{p}^{3}}+3{{p}^{2}}+3p+1}\\=p+1\\=125\end{array}$
Question 5 
$ \displaystyle \begin{array}{l}If\,x=\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}1}}\\Then\,\,\,5{{x}^{2}}5x1=?\end{array}$
0  
3  
4
 
5 
Question 5 Explanation:
$ \begin{array}{l}x=\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}1}}\\{{x}^{2}}=\frac{\sqrt{5}+1}{\sqrt{5}1}\\=>{{x}^{2}}=\frac{{{(\sqrt{5}+1)}^{2}}}{4}\\=>4{{x}^{2}}={{(\sqrt{5}+1)}^{2}}=6+2\sqrt{5}\\=>{{x}^{2}}=\frac{6+2\sqrt{5}}{4}\\5{{x}^{2}}5x1\\=\frac{30+10\sqrt{5}10\sqrt{5}104}{4}\\=\frac{16}{4}\\=4\end{array}$
Once you are finished, click the button below. Any items you have not completed will be marked incorrect.
There are 5 questions to complete.
List 