• This is an assessment test.
  • To draw maximum benefit, study the concepts for the topic concerned.
  • Kindly take the tests in this series with a pre-defined schedule.

Algebra: Quadratic Equations Test-4

Congratulations - you have completed Algebra: Quadratic Equations Test-4.You scored %%SCORE%% out of %%TOTAL%%.You correct answer percentage: %%PERCENTAGE%% .Your performance has been rated as %%RATING%%
Your answers are highlighted below.
Question 1
The expression $ \displaystyle {{x}^{4}}-2{{x}^{2}}+k$
will be a perfect square
when the value of K is
A
2
B
1
C
−1
D
−2
Question 1 Explanation: 
$ \begin{array}{l}{{x}^{4}}-2{{x}^{2}}+k\\={{x}^{4}}-2{{x}^{2}}+1+k-1\\={{({{x}^{2}}-1)}^{2}}+k-1\\If\,k=1\,\text{then}\,\text{the}\,\text{term}\,\text{will}\,\text{be}\,\text{a}\,\text{perfect}\,\text{square}\text{.}\end{array}$
Question 2
if p−2q=4, then the value of p3−8q3−24pq−64 is:
A
2
B
0
C
3
D
-1
Question 2 Explanation: 
$ \displaystyle \begin{array}{l}p-2q=4\\Cubing\,both\,sides,\\=>{{(p-2q)}^{3}}={{4}^{3}}\\=>{{p}^{3}}-3.{{p}^{2}}.2q+3.p.4{{q}^{2}}-8{{q}^{3}}=64\\=>{{p}^{3}}-6pq(p-2q)-8{{q}^{3}}=64\\=>{{p}^{3}}-24pq-8{{q}^{3}}-64=0\end{array}$
Question 3
If the expression x2 +x +1 is<br>written in the form $\displaystyle {{\left( x+\frac{1}{2} \right)}^{2}}+{{q}^{2}}$<br>then the possible values of q are
A
$ \displaystyle \pm \frac{1}{3}$
B
$ \displaystyle \pm \frac{\sqrt{3}}{2}$
C
$ \displaystyle \pm \frac{2}{\sqrt{3}}$
D
$ \displaystyle \pm \frac{1}{2}$
Question 3 Explanation: 
$ \displaystyle \begin{array}{l}{{\left( x+\frac{1}{2} \right)}^{2}}+{{q}^{2}}={{x}^{2}}+x+1\\=>{{x}^{2}}+\frac{1}{4}+x+{{q}^{2}}={{x}^{2}}+x+1\\=>{{q}^{2}}=\frac{3}{4}\\=>q=\pm \sqrt{\frac{3}{4}}=\pm \frac{1}{2}\sqrt{3}\end{array}$
Question 4
$ \displaystyle {{a}^{2}}-2a-1=0$
then value of $ \displaystyle {{a}^{2}}+\frac{1}{{{a}^{2}}}+3a-\frac{3}{a}$ is
A
25
B
30
C
35
D
40
Question 4 Explanation: 
$ \displaystyle \begin{array}{l}{{a}^{2}}-2a-1=0\\{{a}^{2}}-1=2a\\on\,dividing\,with\,a\\a-\frac{1}{a}=2\\Now\,\,{{a}^{2}}+\frac{1}{{{a}^{2}}}+3a-\frac{3}{a}\\{{\left( a-\frac{1}{a} \right)}^{2}}+2+3\left( a-\frac{1}{a} \right)\\4+2+3(2)\\4+2+6=12\end{array}$
Question 5
If a2 +1=a, then the value of a12 +a6 +1 is:
A
-3
B
1
C
2
D
3
Question 5 Explanation: 
\[\begin{align} & {{a}^{2}}+1=a \\ & =>{{a}^{2}}-a+1=0 \\ & Multiply\,both\,sides\,by\,(a+1), \\ & =>(a+1)({{a}^{2}}-a+1)=0 \\ & =>{{a}^{3}}+1=0 \\ & =>{{a}^{3}}=\,-1 \\ & Thus, \\ & {{a}^{12}}+{{a}^{6}}+1=1+1+1=3 \\ & \\ & Alternate\,solution \\ & {{a}^{2}}+1=a \\ & Cubing\,both\,sides \\ & =>{{a}^{6}}\,+\,1+\,3{{a}^{2}}\,({{a}^{2}}\,+\,1)\,=\,{{a}^{3}} \\ & =>{{a}^{6}}\,+\,1+\,3{{a}^{2}}\,(a)\,=\,{{a}^{3}}\,\,(initial\,condition\,used) \\ & =>{{a}^{6}}\,+\,1+\,3{{a}^{3}}\,=\,{{a}^{3}} \\ & =>{{a}^{6}}\,+\,1+\,2{{a}^{3}}\,\,=\,0 \\ & =>\,\,{{({{a}^{3}}\,+\,1)}^{2}}\,=\,0 \\ & =>\,\,{{a}^{3}}\,\,=\,-1 \\ \end{align}\] Using this, we can find the value of the expression. Remember, in this case, only one real root (a=-1) exists whereas the other two roots are imaginary in nature.
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 5 questions to complete.
List
Return
Shaded items are complete.
12345
End
Return



Pin It on Pinterest