• This is an assessment test.
  • These tests focus on the basics of Maths and are meant to indicate your preparation level for the subject.
  • Kindly take the tests in this series with a pre-defined schedule.

Basic Maths: Test 32

Congratulations - you have completed Basic Maths: Test 32.

You scored %%SCORE%% out of %%TOTAL%%.

Your performance has been rated as %%RATING%%


Your answers are highlighted below.
Question 1
$\left( 7.5\times 7.5-37.5+2.5\times 2.5 \right)$ is equal to:
A
15
B
5
C
25
D
35
Question 1 Explanation: 
$\begin{align} & \left( 7.5\times 7.5-37.5+2.5\times 2.5 \right) \\ & =\left[ {{\left( 7.5 \right)}^{2}}-2\times 7.5\times 2.5+{{\left( 2.5 \right)}^{2}} \right] \\ & ={{\left( 7.5-2.5 \right)}^{2}}={{\left( 5 \right)}^{2}}=25 \\ \end{align}$
Question 2
$\left( \sqrt{192}-\sqrt{147} \right)\div \sqrt{24}$ is equal to:
A
$\sqrt{6}$
B
$\sqrt{3}/2$
C
$\sqrt{2}/4$
D
$\sqrt{6}/2$
Question 2 Explanation: 
$\begin{align} & \left( \sqrt{192}-\sqrt{147} \right)\div \sqrt{24} \\ & =\frac{\sqrt{192}-\sqrt{147}}{\sqrt{24}} \\ & =\frac{8\sqrt{3}-7\sqrt{3}}{2\sqrt{6}}=\frac{\sqrt{3}}{2\sqrt{2}\sqrt{3}}=\frac{1}{2\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}} \\ & =\frac{\sqrt{2}}{4} \\ \end{align}$
Question 3
The value of
\[\frac{\sqrt{63}-\sqrt{99}}{\sqrt{28}-\sqrt{44}}\]is:
A
$\frac{3}{4}$
B
$\frac{2}{3}$
C
$1\frac{1}{2}$
D
$1\frac{2}{3}$
Question 3 Explanation: 
$\begin{align} & \frac{\sqrt{63}-\sqrt{99}}{\sqrt{28}-\sqrt{44}} \\ & =\frac{\sqrt{9\times 7}-\sqrt{9\times 11}}{\sqrt{4\times 7}-\sqrt{4\times 11}} \\ & =\frac{3\sqrt{7}-3\sqrt{11}}{2\sqrt{7}-2\sqrt{11}}=\frac{3\left( \sqrt{7}-\sqrt{11} \right)}{2\left( \sqrt{7}-\sqrt{11} \right)} \\ & =\frac{3}{2}=1\frac{1}{2} \\ \end{align}$
Question 4
$\sqrt{12+\sqrt{12+\sqrt{12+.......}}}$is equal to:
A
6⅔
B
3
C
$3\frac{1}{2}$
D
4
Question 4 Explanation: 
$\begin{align} & Let\,\,x\,=\,\sqrt{12+\sqrt{12+\sqrt{12+.......}}} \\ & or,\,x=\sqrt{12+x} \\ & or,\,{{x}^{2}}=12+x \\ & or,\,{{x}^{2}}-x-12=0 \\ & or,\,{{x}^{2}}-4x+3x-12=0 \\ & or\,x\left( x-4 \right)+3\left( x-4 \right)=0 \\ & or,\,\left( x+3 \right)\,\left( x-4 \right)=0 \\ & Therefore\,\,x=-3\,\,or\,x=4 \\ \end{align}$
But the given expression is positive Hence, $x\ne -3$
Question 5
$\left( 1.5\times 1.5+16.5+5.5\times 5.5 \right)$ is equal to:
A
99
B
49
C
100
D
36
Question 5 Explanation: 
$\begin{align} & ?=\left( 1.5\times 1.5+16.5+5.5\times 5.5 \right) \\ & =\left[ {{\left( 1.5 \right)}^{2}}+2\times 1.5\times 5.5+{{\left( 5.5 \right)}^{2}} \right] \\ & ={{\left[ 1.5+5.5 \right]}^{2}}={{\left( 7 \right)}^{2}}=49 \\ \end{align}$
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 5 questions to complete.
List
Return
Shaded items are complete.
12345
End
Return

Want to explore more Arithmetic Tests?

Explore Our Arithmetic Tests

Get Posts Like This Sent to your Email
Updates for Free Live sessions and offers are sent on mail. Don't worry: we do not send too many emails..:)
Get Posts Like This Sent to your Email
Updates for Free Live sessions and offers are sent on mail. Don't worry: we do not send too many emails..:)



Join Our Newsletter
Get the latest updates from our side, including offers and free live updates, on email.
Join Our Newsletter
Leverage agile frameworks to provide a robust synopsis for high level overviews.
Join our Free TELEGRAM GROUP for exclusive content and updates
Join our Free TELEGRAM GROUP for exclusive content and updates

Pin It on Pinterest