• This is an assessment test.
• These tests focus on geometry and mensuration and are meant to indicate your preparation level for the subject.
• Kindly take the tests in this series with a pre-defined schedule.

## Geometry and Mensuration: Test 28

Congratulations - you have completed Geometry and Mensuration: Test 28. You scored %%SCORE%% out of %%TOTAL%%. You correct answer percentage: %%PERCENTAGE%% . Your performance has been rated as %%RATING%%
 Question 1
ABCD is a rhombus. AB is produced to F and BA is produced to E such that AB= AE= BF. Also ED and CF are produced to meet at G. Then:
 A ED > CF B EG⊥GF C ED2 +CF2= EF2 D ED||CF
Question 1 Explanation: height="246" />
Here AB= AE= BF.......(1) Given ABCD is a rhombus.
Therefore, AB = BC = CD = AD ... (2)
On equating (1) and (2), we get
BC = BF
⇒∠4 = ∠3 [Angles opposite to equal sides are equal]
Again, ∠B is the exterior angle of triangle BFC.
Therefore, ∠2 = ∠3 + ∠4 = 2∠4 ... (3)
Similarly, AE = AD ⇒∠5 = ∠6
Also, ∠A is the exterior angle of triangle ADE
⇒∠1 = 2∠6 ... (4)
Also, ∠1 +∠2 = 180° [consecutive interior angles]
∴ 2∠6 + 2∠4 = 180°
⇒∠6 + ∠4 = 90° ... (5)
Now, in triangle EGF, by angle sum property of triangle
⇒ 90°+ ∠G = 180° [using (5)]
Thus, EG ⊥ FG.
 Question 2
Two equal circles of radius 4 cm intersect each other such that each passes through the centre of the other. The length of the common chord is:
 A $\displaystyle 2\sqrt{3}$ B $\displaystyle 4\sqrt{3}$ C $\displaystyle 2\sqrt{2}$ D $\displaystyle 8$
Question 2 Explanation:
$\begin{array}{l}The\text{ }length\text{ }of\text{ }the\text{ }common\text{ }chord\text{ }=\text{ }\\2\text{ }\times \text{ }length\text{ }of\text{ }the\text{ }altitude\text{ }of\text{ }the\text{ }equilateral\text{ }triangle\text{ }of\text{ }side\text{ }4\text{ }cm.\\Thus\text{ }the\text{ }length\text{ }of\text{ }common\text{ }chord\text{ }is\\2\times \frac{\sqrt{3}}{2}\times 4\\=4\sqrt{3}\end{array}$
 Question 3
The length of two chords AB and AC of a circle are 8 cm and 6 cm and ∠BAC= 90o, then the radius of circle is
 A 25 cm B 20 cm C 4 cm D 5 cm
Question 3 Explanation: $\begin{array}{l}The\text{ }diameter=\sqrt{{{8}^{2}}+{{6}^{2}}}=10\\Thus\text{ }the\text{ }radius\text{ }=5.\end{array}$
 Question 4
The tangents are drawn at the extremities of a diameter AB of a circle with centre P. If a tangent to the circle at the point C intersects the other two tangents at Q and R, then the measure of the ∠QPR is
 A 45o B 60o C 90o D 180o
Question 4 Explanation: ∠QCP= 900,
∠QAP=900.
AQ=QC.
Thus AQCP is a square.
∠QPC= 450
Similarly ∠RPC=450
Thus ∠QPR = 900.
Correct option is (c)
 Question 5
The circumcentre of a triangle ΔABC is O. If ∠BAC= 85o and BCA= 75o, then the value of ∠OAC is
 A 40o B 60o C 70o D 90o
Question 5 Explanation: ∠BAC=85, ∠BCA=75
∠AOC=360-2(BAC+BCA)
=360 – 320=40
Thus ∠OAC= ½ (180-40)=70
Correct option is (c)
Once you are finished, click the button below. Any items you have not completed will be marked incorrect.
There are 5 questions to complete.
 ← List →
 1 2 3 4 5 End

### Want to explore more Arithmetic Tests?    