Content Ad 002

Perfect cube factors:
If a number is a perfect cube, then the power of the prime factors should be divisible by 3.
Example 1:Find the number of factors of293655118 that are perfect cube?
Solution: If a number is a perfect cube, then the power of the prime factors should be divisible by 3. Hence perfect cube factors must have
2(0 or 3 or 6or 9)—– 4 factors
3(0 or 3 or 6)  —–  3  factors
5(0 or 3)——- 2 factors
11(0 or 3 or 6 )— 3 factors
Hence, the total number of factors which are perfect cube 4x3x2x3=72
Perfect square and perfect cube
If a number is both perfect square and perfect cube then the powers of prime factors must be divisible by 6.
Example 2: How many factors of 293655118 are both perfect square and perfect cube?
Solution: If a number is both perfect square and perfect cube then the powers of prime factors must be divisible by 6.Hence both perfect square and perfect cube must have
2(0 or 6)—– 2 factors
3(0 or 6) —– 2 factors
5(0)——- 1 factor
11(0 or 6)— 2 factors
Hence total number of such factors are 2x2x1x2=8
Example 3: How many factors of293655118are either perfect squares or perfect cubes but not both?
Solution:
Let A denotes set of numbers, which are perfect squares.
If a number is a perfect square, then the power of the prime factors should be divisible by 2. Hence perfect square factors must have
2(0 or 2 or 4 or 6 or 8)—– 5 factors
3(0 or 2 or 4 or 6)  —– 4 factors
5(0 or 2or 4 )——- 3 factors
11(0 or 2or 4 or6 or 8 )— 5 factors
Hence, the total number of factors which are perfect square i.e. n(A)=5x4x3x5=300
Let B denotes set of numbers, which are perfect cubes
If a number is a perfect cube, then the power of the prime factors should be divisible by 3. Hence perfect cube factors must have
2(0 or 3 or 6or 9)—– 4 factors
3(0 or 3 or 6)  —–  3  factors
5(0 or 3)——- 2 factors
11(0 or 3 or 6 )— 3 factors
Hence, the total number of factors which are perfect cube i.e. n(B)=4x3x2x3=72
If a number is both perfect square and perfect cube then the powers of prime factors must be divisible by 6.Hence both perfect square and perfect cube must have
2(0 or 6)—– 2 factors
3(0 or 6) —– 2 factors
5(0)——- 1 factor
11(0 or 6)— 2 factors
Hence total number of such factors are i.e.n(A∩B)=2x2x1x2=8
We are asked to calculate which are either perfect square or perfect cubes i.e.
n(A U B )= n(A) + n(B) – n(A∩B)
=300+72 – 8
=364
Hence required number of factors is 364.

Content Ads 02 Sample 01

Join Our Newsletter

Get the latest updates from our side, including offers and free live updates, on email.

Rsz Undraw Envelope N8lc Smal
Rsz 1rsz Close Img
Free Live Webinar Update