- This is an assessment test.
- To draw maximum benefit, study the concepts for the topic concerned.
- Kindly take the tests in this series with a pre-defined schedule.

## Algebra: Basics Test-8

Congratulations - you have completed

*Algebra: Basics Test-8*.You scored %%SCORE%% out of %%TOTAL%%.You correct answer percentage: %%PERCENTAGE%% .Your performance has been rated as %%RATING%%
Your answers are highlighted below.

Question 1 |

$ \displaystyle If\,\,\,\frac{\sqrt{7}-2}{\sqrt{7}+2}=p\sqrt{7}+q$

then the value of p is

then the value of p is

$ \displaystyle \frac{5}{3}$ | |

$ \displaystyle -\frac{11}{3}$ | |

$ \displaystyle \frac{11}{3}$ | |

$ \displaystyle \frac{-4\sqrt{7}}{3}$ |

Question 1 Explanation:

$ \displaystyle \begin{array}{l}\frac{\sqrt{7}-2}{\sqrt{7}+2}=\frac{\sqrt{7}-2}{\sqrt{7}+2}\times \frac{\sqrt{7}-2}{\sqrt{7}-2}\\=\frac{{{\left( \sqrt{7}-2 \right)}^{2}}}{7-4}=\frac{7+4-4\sqrt{7}}{3}\\=\frac{11}{3}-\frac{4\sqrt{7}}{3}\\Therefore\,\,\,\,\frac{\sqrt{7}-2}{\sqrt{7}+2}=p\sqrt{7}+q\\\Rightarrow \,\frac{11}{3}-\frac{4}{3}\sqrt{7}=a\sqrt{7}+b\\Clearly,\\p=-\frac{4}{3}\,\,and\,\,\,q=\frac{11}{3}\end{array}$

Question 2 |

If (125)

^{p}=3125, then the value of p is$ \displaystyle 1\frac{1}{5}$ | |

$ \displaystyle 2\frac{3}{5}$ | |

$ \displaystyle 1\frac{2}{3}$ | |

$ \displaystyle 4\frac{5}{7}$ |

Question 2 Explanation:

$ \displaystyle \begin{array}{l}Therefore\,\,\\{{\left( 125 \right)}^{p}}=3125\\\Rightarrow {{\left( {{5}^{3}} \right)}^{p}}={{5}^{5}}\Rightarrow {{5}^{3p}}={{5}^{5}}\\\Rightarrow 3p=5\\\Rightarrow p=\frac{5}{3}\end{array}$

Question 3 |

$ \displaystyle If\,\,\,{{5}^{\sqrt{k}}}+{{12}^{\sqrt{k}}}={{13}^{\sqrt{k}}},\,\,then\,\,\,k\,\,\,\,is\,\,\,equal\,\,\,to$

$ \displaystyle 6\frac{5}{4}$ | |

4 | |

$ \displaystyle 3\frac{5}{4}$ | |

6 |

Question 3 Explanation:

$ \displaystyle \begin{array}{l}{{5}^{\sqrt{k}}}+{{12}^{\sqrt{k}}}={{13}^{\sqrt{k}}}\\We\,\,\,know\,\,\,\,that\,\,\,{{5}^{2}}+{{12}^{2}}={{13}^{2}}\\Therefore\,\,\,\sqrt{k}=2\Rightarrow k={{2}^{2}}=4\end{array}$

Question 4 |

If $ \displaystyle {{2}^{2p-q}}=16\,\,\,\,and\,\,\,{{2}^{p+q}}=32\,,\,\,\,the\,\,\,\,value\,\,\,of\,\,\,pq\,\,\,is$

8 | |

6 | |

4 | |

2 |

Question 4 Explanation:

$ \displaystyle \begin{array}{l}{{2}^{2p-q}}=16={{2}^{4}}\\\Rightarrow 2p-q=4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,............\left( i \right)\\{{2}^{p+q}}=32={{2}^{5}}\\\Rightarrow p+q=5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...........\left( ii \right)\\on\,\,\,\,adding\,\,\,\,equations\,\,\,\,(i)\,\,\,and\,\,\left( ii \right),\\q=5-p=5-3=2\\Therefore\,\,\,pq=3\times 2=6\end{array}$

Question 5 |

If $ \displaystyle {{\left( \frac{3}{5} \right)}^{3}}{{\left( \frac{3}{5} \right)}^{-6}}={{\left( \frac{3}{5} \right)}^{2a-1}}$

-5 | |

-4 | |

-3 | |

1 |

Question 5 Explanation:

$ \displaystyle \begin{array}{l}{{\left( \frac{3}{5} \right)}^{3}}{{\left( \frac{3}{5} \right)}^{-6}}={{\left( \frac{3}{5} \right)}^{2a-1}}\\\Rightarrow {{\left( \frac{3}{5} \right)}^{3}}{{\left( \frac{3}{5} \right)}^{-3}}{{\left( \frac{3}{5} \right)}^{-3}}={{\left( \frac{3}{5} \right)}^{2a-1}}\\\Rightarrow {{\left( \frac{3}{6} \right)}^{0}}{{\left( \frac{3}{5} \right)}^{-3}}={{\left( \frac{3}{5} \right)}^{2a-1}}\\\Rightarrow 2a-1=-3\\\Rightarrow 2a=-3+1=-2\\\Rightarrow x=-1\end{array}$

Once you are finished, click the button below. Any items you have not completed will be marked incorrect.

There are 5 questions to complete.

List |

mistake in question number 1. instead of q, p is written !