[slider]

  • This is an assessment test.
  • To draw maximum benefit, study the concepts for the topic concerned.
  • Kindly take the tests in this series with a pre-defined schedule.

Algebra Level 3 Test 4

Congratulations - you have completed Algebra Level 3 Test 4.You scored %%SCORE%% out of %%TOTAL%%.You correct answer percentage: %%PERCENTAGE%% .Your performance has been rated as %%RATING%%
Your answers are highlighted below.
Question 1
The total number of integers pairs (x, y) satisfying the equation x + y = xy is
A
0
B
1
C
2
D
None of the above.
Question 1 Explanation: 
Given equation is x + y = xy
⇒ xy – x – y + 1 = 1
⇒ (x – 1)(y – 1) = 1
x – 1= 1
and  y −1= 1or
x −1= –1
y – 1= –1
Clearly (0, 0) and (2, 2) are the only pairs that will satisfy the equation
Question 2
If | b |≥ 1 and x = − | a | b , then which one of the following is necessarily true?
A
a – xb < 0
B
a – xb ≥ 0
C
a – xb > 0
D
a – xb ≤ 0
Question 2 Explanation: 
x = –|a| b
Now a – xb = a – (– |a| b) b
= a + |a|b2
Therefore  a – xb = a + ab2 …a ≥ 0
OR
a – xb
= a – ab2 …a < 0
= a(1 + b2) = a(1 – b2)
Consider first case:
As a ≥ 0 and |b| ≥ 1, therefore (1 + b2) is positive.
Therefore a (1 + b2) ≥ 0
Therefore a – xb ≥ 0
Consider second case.
As a < 0 and |b| ≥ 1, therefore (1 – b2) ≤ 0
Therefore a (1 – b2) ≥ 0 (Since –ve × -ve = +ve and 1 – b2 can be zero also), i.e. a – xb ≥ 0
Therefore, in both cases a – xb ≥ 0.
Question 3
If 13x + 1 < 2z and z + 3 = 5y2, then
A
x is necessarily less than y
B
x is necessarily greater than y
C
x is necessarily equal to y
D
None of the above is necessarily true
Question 3 Explanation: 
13x + 1 < 2z and z + 3 = 5y2
13x + 1 < 2 (5y2 − 3)
13x + 1< 10y2 − 6
13x + 7 < 10y2 put x = 1
20 < 10y2 and y2 > 2
Therefore y2 > 2 =  (y2 − 2) > 0
so option d is the right answer
Question 4
If n is such that 36 ≤ n ≤ 72 , Then a = {(n2 + 2√n(n+ 4) +16)} / (n+ 4√n +4) satisfies
A
20 < x < 54
B
23 < x < 58
C
25 < x < 64
D
28 < x < 60
Question 4 Explanation: 
36 ≤ n ≤ 72
We are given by
a = {(n2 + 2√n(n+ 4) +16)} / (n+ 4√n +4)
Put a = 36.
And get the value 28 which is the least value
Question 5
Consider the sets Tn = {n, n +1, n + 2, n + 3, n + 4} , where n = 1, 2, 3,…, 96. How many of these sets contain 6 or any integral multiple thereof (i.e. any one of the numbers 6, 12, 18, …)?
A
80
B
81
C
82
D
83
Question 5 Explanation: 
From the question we can observe that 6 will appear in 5
sets T2, T3, T4, T5 and T6.
Similarly, 12 will also appear in 5 sets
But the multiple of 6 appears in the next 5th set
that is in T12 Thus, each multiple of 6 will appear in 5 distinct sets.
Therefore we can say that there will be 16 multiplies of 6 till 96 .
Therefore 16 multiples of 6 will appear in 16 × 5 = 80 sets.
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 5 questions to complete.
List
Return
Shaded items are complete.
12345
End
Return

Want to explore more Arithmetic Tests?

Explore Our Arithmetic Tests

Pop Up

LIVE STREAMING ON YOUTUBE

Starting 3rd June 2024, 7pm

Onwards

FREE CHEAT SHEET

Learn
How to Master VA-RC 

This free (and highly detailed) cheat sheet will give you strategies to help you grow

No thanks, I don't want it.

Join our Free TELEGRAM GROUP for exclusive content and updates

Rsz 1rsz Close Img

Join Our Newsletter

Get the latest updates from our side, including offers and free live updates, on email.

Rsz Undraw Envelope N8lc Smal
Rsz 1rsz Close Img