• This is an assessment test.
  • To draw maximum benefit, study the concepts for the topic concerned.
  • Kindly take the tests in this series with a pre-defined schedule.

Algebra: Quadratic Equations Test-1

Congratulations - you have completed Algebra: Quadratic Equations Test-1.You scored %%SCORE%% out of %%TOTAL%%.You correct answer percentage: %%PERCENTAGE%% .Your performance has been rated as %%RATING%%
Your answers are highlighted below.
Question 1
$ \begin{array}{l}If\,\,p=99,\,\\then\,\,value\,\,of\,\,\,p\left( {{p}^{2}}+3p+3 \right)is\end{array}$
A
999
B
9999
C
99999
D
999999
Question 1 Explanation: 
$ \begin{array}{l}p\left( {{p}^{2}}+3p+3 \right)\\=99\left( {{99}^{2}}+3X99+3 \right)\\=99\left( 9801+297+3 \right)\\=99(9801+300)\\=99(10101)\\=999999\end{array}$
Question 2
If p= 999,
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$ is
A
1000
B
999
C
998
D
1002
Question 2 Explanation: 
$ \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$
$ =\sqrt[3]{999\left( 1001001 \right)+1}$
$ \displaystyle \begin{array}{l}=\sqrt[3]{999999999+1}\\=\sqrt[3]{1000000000}\\=1000\end{array}$
Question 3
If p=101,
then the value of
$ \displaystyle \sqrt[3]{p\left( {{p}^{2}}-3p+3 \right)-1}$ is
A
100
B
101
C
102
D
1000
Question 3 Explanation: 
$ \sqrt[3]{p\left( {{p}^{2}}-3p+3 \right)-1}$
$ \displaystyle \begin{array}{l}\sqrt[3]{101\left( {{101}^{2}}-3X101+3 \right)-1}\\=\sqrt[3]{101\left( 10201-300 \right)-1}\\=\sqrt[3]{1000000}\\=100\end{array}$
Question 4
If p=124,
$latex \displaystyle \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$=?
A
5
B
7
C
123
D
125
Question 4 Explanation: 
$ \sqrt[3]{p\left( {{p}^{2}}+3p+3 \right)+1}$
$ \displaystyle \begin{array}{l}\sqrt[3]{{{p}^{3}}+3{{p}^{2}}+3p+1}\\=p+1\\=125\end{array}$
Question 5
$ \displaystyle \begin{array}{l}If\,x=\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}-1}}\\Then\,\,\,5{{x}^{2}}-5x-1=?\end{array}$
A
0
B
3
C
4
D
5
Question 5 Explanation: 
$ \begin{array}{l}x=\sqrt{\frac{\sqrt{5}+1}{\sqrt{5}-1}}\\{{x}^{2}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}\\=>{{x}^{2}}=\frac{{{(\sqrt{5}+1)}^{2}}}{4}\\=>4{{x}^{2}}={{(\sqrt{5}+1)}^{2}}=6+2\sqrt{5}\\=>{{x}^{2}}=\frac{6+2\sqrt{5}}{4}\\5{{x}^{2}}-5x-1\\=\frac{30+10\sqrt{5}-10\sqrt{5}-10-4}{4}\\=\frac{16}{4}\\=4\end{array}$
Once you are finished, click the button below. Any items you have not completed will be marked incorrect. Get Results
There are 5 questions to complete.
List
Return
Shaded items are complete.
12345
End
Return

Want to explore more Arithmetic Tests?

Explore Our Arithmetic Tests

Gk 360

FREE CHEAT SHEET

Learn
How to Master VA-RC 

This free (and highly detailed) cheat sheet will give you strategies to help you grow

No thanks, I don't want it.

Join Our Newsletter

Get the latest updates from our side, including offers and free live updates, on email.

Rsz Undraw Envelope N8lc Smal
Rsz 1rsz Close Img