- This is an assessment test.
- These tests focus on the basics of Maths and are meant to indicate your preparation level for the subject.
- Kindly take the tests in this series with a pre-defined schedule.
Basic Maths: Test 51
Congratulations - you have completed Basic Maths: Test 51.
You scored %%SCORE%% out of %%TOTAL%%.
Your performance has been rated as %%RATING%%
Your answers are highlighted below.
Question 1 |
$\frac{{{\left( 6.679 \right)}^{3}}+{{\left( 3.321 \right)}^{3}}}{6.679\times 6.679-\left( 6.679\times 3.321 \right)+3.321\times 3.321}$
10 | |
1.248 | |
20.44 | |
1 |
Question 1 Explanation:
Let 6.679= a
And 3.321= b
Therefore given expression
$\begin{align} & =\frac{{{a}^{3}}+{{b}^{3}}}{{{a}^{2}}-ab+{{b}^{2}}} \\ & =\frac{\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)}{{{a}^{2}}-ab+{{b}^{2}}} \\ & =a+b=6.679+3.321 \\ & =10 \\ \end{align}$
And 3.321= b
Therefore given expression
$\begin{align} & =\frac{{{a}^{3}}+{{b}^{3}}}{{{a}^{2}}-ab+{{b}^{2}}} \\ & =\frac{\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)}{{{a}^{2}}-ab+{{b}^{2}}} \\ & =a+b=6.679+3.321 \\ & =10 \\ \end{align}$
Question 2 |
$\frac{127\times 127+127\times 123+123\times 123}{127\times 127\times 127-123\times 123\times 123}$
is equal to
4 | |
270 | |
$\frac{1}{4}$ | |
$\frac{1}{270}$ |
Question 2 Explanation:
Let 127 =a and 123= b
Given expression
$\begin{align} & \frac{a\times a+a\times b+b\times b}{a\times a\times a-b\times b\times b} \\ & =\frac{{{a}^{2}}+ab+{{b}^{2}}}{{{a}^{3}}-{{b}^{3}}} \\ & =\frac{{{a}^{2}}+ab+{{b}^{2}}}{\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)} \\ & =\frac{1}{a-b}=\frac{1}{127-123}=\frac{1}{4} \\ \end{align}$
Given expression
$\begin{align} & \frac{a\times a+a\times b+b\times b}{a\times a\times a-b\times b\times b} \\ & =\frac{{{a}^{2}}+ab+{{b}^{2}}}{{{a}^{3}}-{{b}^{3}}} \\ & =\frac{{{a}^{2}}+ab+{{b}^{2}}}{\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)} \\ & =\frac{1}{a-b}=\frac{1}{127-123}=\frac{1}{4} \\ \end{align}$
Question 3 |
The value of
$\frac{0.512+0.343}{0.64-0.56+0.49}$
is
0.2 | |
0.25 | |
0.3 | |
0.8 |
Question 3 Explanation:
$\begin{align}
& \frac{{{\left( 0.8 \right)}^{3}}+{{\left( 0.7 \right)}^{3}}}{{{\left( 0.8 \right)}^{2}}-0.8\times 0.7+{{\left( 0.7 \right)}^{2}}} \\
& Let\,\,0.8=a\,,\,\,\,and\,\,\,0.7=b \\
& Therefore\,\,\,\exp ression \\
& =\frac{{{a}^{3}}+{{b}^{3}}}{{{a}^{2}}-ab+{{b}^{2}}} \\
& =\frac{\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)}{{{a}^{2}}-ab+{{b}^{2}}} \\
& =a+b=0.8+0.7=1.5 \\
\end{align}$
Question 4 |
$3002\times 66+72716=?\times 128$
2177 | |
2167 | |
2467 | |
2116 |
Question 4 Explanation:
$\begin{align}
& 3002\times 66+72716=?\times 128 \\
& \Rightarrow 198132+72716=?\times 128 \\
& \Rightarrow 270848=?\times 128 \\
& \Rightarrow ?=270848\div 128=2116 \\
\end{align}$
Question 5 |
$\left[ \left( 3\sqrt{11}-\sqrt{11} \right)\times \left( 5\sqrt{11}+2\sqrt{11} \right) \right]-{{\left( 12 \right)}^{2}}=?$
100 | |
$10\sqrt{11}$ | |
10 | |
$\sqrt{11}$ |
Question 5 Explanation:
$\begin{align}
& ?=2\sqrt{11}\times 7\sqrt{11}-{{12}^{2}} \\
& =154-144=10 \\
\end{align}$
Once you are finished, click the button below. Any items you have not completed will be marked incorrect.
There are 5 questions to complete.
List |